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Bending or wind pressure loading is called a loading which varies with 

the angle #J (see figure) according to the formulas 

Ql = Qll 03s ‘p9 qz = h1 sl* ‘F, qn = qn1 cos p (1) 

All stress resultants, as well as the displacements in the shell, vary 

with q5 in conformity with the same law: 

T 1 = t1coscp, T, = t, c.os y, S= ssincp 

M, = m, coscp, M, - m,coscp, H = k,sinv 

u = ulcoscp, u - u1 sin 9, w = u-1 cos p 

N,= n,coscp; El = Eli cos ‘9, E2 = &?I cos y, w = toI sin '2 

N2 = n, sin ‘3, y.1 = x11 cos ‘p, y.2 = x*1 cos y, T = r1 sin ‘p 

(2) 

l'herefore, in the case of the loading just indicated, the system of diffe- 

rential equations of a shell of revolution becomes a system of ordinary 

differential equations, but this system is of the eighth order, as in the 

general case of loading. 

The possibility of lowering the order of the system was first dis- 

covered by Schwerin in the case of the spherical shell. It is also known 

that the analysis of a cylindrical shell under bending loads can be re- 

duced to the treatment of a differential equation of the fourth order 

with constant coefficients [ 1 3. 

Novozhilov has reduced the problem of analyzing shells having the shape 

of any surface of revolution, under wind pressure loading, to that of one 
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differential equation of the second order with respect to an u&nom com- 
plex function. To this end he introduced a complex transformation, of the 

fundamental equations of the theory of shells. In this way the order of 
the original system in terms of real quantities becomes halved. In carry- 
ing out Novozhilov’s complex transformation the original system of diffe- 
rential equations can be simplified, however, in one of the following 
ways. (1) Poisson’s ratio p is assumed to be zero; (2) If p f 0, a number 
of terms is omitted in the compatibility equations (formula (16.5). p:71, 
13 ft. 

The present note shows that the order of the system can be lowered 
from eighth to fourth with no changes at all in the original system. 

As such a system we use the five equations of equilibrium of shells 
((1.5) [2 I), the three equations of continuity (S.lf, p. 29 [ 3 1) and 
the six elasticity relations f(l2.11, p. 56 I3 I ). 

After differentiation with respect to the coordinate $, the equations 
of statics ((1.5) [ 2 1 1 assme the foxm 

& (UG sin 0) + lrl, (s + $) - t& cas 8 + nlRz sin e + g,,K,i?, sin B = 0 

&[R4l f++ $)I +R,cose(s+&')- (31 

-- t&, + nzR, sin 0 + g2,R& sin 6 = 0 

(n,RpsinO)+ R,n, 1 -$--2 + gal = 0 
1 
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1 
n1 = A& sin 0 ,id(m,R,sinO)+R,h,-RR,cos9,n,] if@ 

(4) 
1 

I 
d 

n2 = K,H2 sin0 ;ib 
(h,Rz sin 0) - K,rn, + RI cos Oh, 

I 

where R, and R, are the principal radii of curvature of the middle sur- 

face of the shell. Multiplying the first and the third of (3) by - cos 8 

and- sin 8, respectively, and adding the reults to the second, we find 

- $ (t,Rz sin 0 cos 9) - -$ (R R 1 ,sin?0)t~[R,sillB(s+~~)]+ 

+ (-- qil cos fl + qzl - qnl sin 0) RIRD sin 8 = 0 (5) 

Integration of (5) leads to the first integral of system (3): 

- t1R2 sin 0 cos 0 - n,R2sin20+R2sinOjs+ $-)+ 

+[(-q ,1 cox 0 $ Q?, - qni sin 6) R,R2 sin OdD = C, 

fJ’ 
(61 

‘lhe elimination of the quantities m2 and n2 from (4) and the third of 

(31, allowing fof‘ (61, gives another integral of the equations of statics 

n1Rz2 sin? 8 COP 0 + h,R, pin 0 cos 0 - t,Rz2 sin3 0 - m,R2 sin 0 + 

+iR,sinO[{ (- r/r1 COP: 0 + qu - q,,, sin O)RIRz sin 0d0 
7 

d8 + 
0' (I' 

f [ (qnl cof: 8 -- qt, sit) 0) R,Rs2 sin2 0dO = C, + C, [ R, sin fJd8 (7) 
I3 U’ 

‘lhe integrals (6) and (7) represent the conditions 

the end element of the shell enclosed between the two 
8’ and 8. Stating these conditions directly, we find 

and C,. 

of equilibrium of 

parallel sections 
the constants C, 

‘Ibe system of stresses in the section 8 = const is statically equivalent 

to the stress resultant K, vdVr) and the moment M1 vd+ (V = R, sin 0): 

K, = T,‘F, + TG, + Q, n=(T,cosOcosy,--T,,sinlg+QIsin9coscp)i+ 

+ (Tr cos 0 sin 'p + T,, cos Q + Qi sin 0 sin 92) j + (--YI sin 0 + Q1 cos 8) k 
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M 1 = Ml% - H12(tl = (-HI, cos 0 cos cp + M, sin ‘p) i + 
(8) 

+ (-HI, cos 0 sin ‘p + Ml cos ‘p) j + (--HI2 sin 0 + Ml cos 6) k 

The shear force Q,, 

moments f$*, Hz 

the stress resultants Ti2, T and the twisting 

! 

are connected with the quantities s,l H and N by relations 

of the form 12 

bating to zero the resultant force and the resultant moment of ex- 

ternal and internal forces at the section 8 = const, we get 

en e 2s 

1 &vd~+P1+~ \ (qI?,+q272+qnn)H,R2sinOdfld~ = 0 (10) 

0 0'0 

~Q&J+TOXVKW~J+ [i r x (qlT, + qiza + q,n) R,R, sin0 dldp + 
0 tl'o 

e 

+@f- Pl R,sin6dO)j = 0 (11) 
0 

r. = xH-~_i, x = R, sin 0 cos p, y = RzsinOsinrg (12) 

e 

r =xi+yj-k R,sinf3dO 
s 
0' 

Integrating (10) and (11) 

(81, (91, we find 
with respect ot +, and allowing for (l),(2), 

tlR2 sin 0 cos fJ - sR, sin 0 - hl sin 0 + nlR, sin2 0 + 

+[(, II COS (3 - qzl f qn, sin 0) R,R, sin OdO = - 4 
0’. 

(13) 

-m,R2 sin 0 - t,Rga sin” fJ + ~I,R,~ sin” 0 cos 8 + h,Rz sin 0 cos II + 

+[ (-q ,I sin 0 + qnl cos 0) R,Rze sin2 Ode - 
0’ 
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e 

11~0s 0 - ‘12~ t- qnl sin 0) RIRz sin 0 
0’ 

[I 
’ R,sinOdO]dB = 
A’ 

=f-+G\ R,sinOdO 
0 

(14) 

Comparison of (61, (7) with (13)) (14) shows that 

C,= 48 c, = + (15) 

i.e. the constants C, and C, of integration are proportional to the force 
and the moment, respectively, applied at the end section of the shell. 

Having derived two integrals of the equations of statics, we obtain 

without difficulties two integrals of the continuity equations as well. 

To this end it is only necessary to make use of the statico-geometric 

analogy, that is, in the case under consideration, of the circumstance 

that the continuity equations in terms of the strain components ((5.1)) 

p. 29, and (8.2)) p. 39, [ 3 1 ) and the homogeneous equations of statics, 

after the elimination of N, and N,, contain the same differential opera- 

tors, while the quantities 

TY1, x,; M,, (-sz); s (--T) 

T,, “1; M,, (-q); Ri, (‘/?W) (16) 

appear in these equations in the same manner, 

Transforming (6) and (7), allowing for (4), putting qll = qzl = qnl= 0, 
and replacing the variables (t,, t2, . ..) by (szl, Key, . . . etc.) in 

conformity with (16), we get 

Ri, sin 0 (xp, ccr 0 + TV) - 2 sin2 0 s - (Ebb - E,~) sin 0 cos 0 + C, = 0 (17) 

- R1 sinOcns0 &;I 

I(1 
I 

o cos 0 + ~~~ sin’0 + ~,r cos* 0 - xP1R2 sin* 0 = 

R, sin 0 tI0) 

0’ 

The strain components in terms of displacements are given 

formulas 

(18) 

by the 
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(1% 

Ul CDS 0 (wl + v1 sin 0) sin 0 dt~ 
----_ 

1t1 liz siu 0 +x75- 1 

Substituting these expressions into the equations (171, (18) and consider- 

ing that this substitution must satisfy these twv equations identically, 

we find 

c.q= Cd = 0 

As a result of the determination of four integrals of the original 

system of differential equations, the order of this system is halved. To 

show this explicitly we write down the system arrived at: 

vt, - v.s COs 0 - 3, sin 0 cos 0 + m, sin 0 = 

= v [lo (QH,. h, qnJ + II (P, WI + cm f3 j q21Rl& sin fJ &I 
0’ 

(20) 

&--I-& (ml-~) + X,/L, -- m2R, cos O] - s sin0 + -f$ (co9 8 - sin2 0) - (21) 

- ___ = F, (qll, qzlr q,,J + F, (P, Al) + ST 1 q,,R,R, sill 0 de 
!)I, cos e 

Y 
8’ 

Y+~ + YT~ cos e - 821 sin 0 - ti) sin e cos e = 0 (22) 

1 de?, w (‘OS? e El1 COS 0 --- 
hl r/O 

r,sinO -y-p = 0 ” (23) 

‘I $- + 2sR, cos e + 2 ‘2 sin 0 + 212, cos 8 - Rd, + 

RI sin0cosO 
+ 2/r, y - rn2 'e + q21R,R2 sin 0 = 0 

(24) 
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dr -_ R,x,, - v - 
dt) 

-ZR,cosBr+~~cosB+~i~~O~+ 

+ 
RI sin H cos 0 

” 6JfRy%,,=0 

ko ((Ill, %I, Qn1) = lo(q) = 23y[(q II COS e + qnl sine) RIRz sin 9 c&l + 

O’ 

+~{~(-~,~sin~+~n~c0s6)R,R,2sin2~d~ - 

0’ 

- f (%I c0s 8 - 421 + qnl sin 8) RlR2 sin 0 [i Ii, sin 6 d$] de} 
(1’ 8’ 

(26) 

0 
coso ” -_ 

vx I\ ( -411 sin 0 + qlal cos 0) R,R22 sin28 de _ 
tl‘ 

-[ (Qllcose - %I f qnl sin e) R,R, sill 8 

0’ 

[i lZ,sinBdB]&} 

0’ 

Equation (20) is derived from the integrals 

ing the quantity nl;. (21) is obtained from the 

(13) and (14) by eliminat- 

same integrals by the 
elimination of t ; (22) and (23) 

the integrals ( 13) and ( 181 
are continuity equations derived from 

b y eliminating the quantities dczl /do and 

K21’ respectively; (24) is the second equation of statics obtained by 
eliminating n2 ; (25) is the second continuity equation. We note that the 

compatibility equations (221, (23), (25) can be expressed, with the aid 

of elasticity relations, in terms of stress resultants; this would lead 
to a system of six equations sufficient to determine the six unknowns 

tl’ t2* s, “1’ mz, h,. ‘Ibis system wwld, however, be a very complicated 
one in spite of the lowering of the order of the differential equations. 
To reduce it to a simpler form we use a procedure similar to that intro- 

duced by Meissner for transforming the system of equations of the axisym- 
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metrical shell problem. 

Frcnn relations (19) we imnediately derive 

(27) 
where 

(I, 
1 ( dw, 

--4 + 
> 

w1 cosO - u1 sin 8 

=-KjdU V 
(28) 

It is not difficult to verify that eliminating $ from the three equa- 

tions (271 leads to two relations identical with (221 and. (251. ‘lhus, with 

the aid of (271, one of the integrals and the second compatibility equa- 

tion are identically satisfied. 

Similarly, we represent the stress resultants by means of a certain 

function in connection with loading terms selected in such a manner as to 

satisfy the two nonhomogeneous equations of statics: 

1 dV 
‘, = - H1 dU + 

vcoso In2 sin 0 -- -- 
v 

- - ‘+ S q21R1RL sin 6 d0 
V 

0’ 

t Jbse 
1 - - nq + lo (9) + fr (P, 1w V (29) 

0 
V 

s=u 
2111 

--VsinO- 1 
s 

q2,R,R2 sin fJ cl0 

0’ 

Ihe elimination of function V from (291 actually leads 

identical with (20) and (241. 

To obtain equations for detemninating the functions I) 

to two equations 

anrl V, it re- 
mains to make use of the equations (21) and (231 and the elasticity rela- 

tions, which permits all stress resultants to be expressed in tens of 
~,‘r and V. 

Indeed, from (271, (29) and from the elasticity relations ((12.11, 

[ 3 1 1, disregarding quantities of the order of magnitude of h2/v2 as com- 
pared with the unity, we obtain 

1 I dljr -- 
TM' = III dO 

+ (1 + p)+rosO + 1 -pa VsinOcosO + 
V LlL “2 

+ -$g- (1 - 14 I/” (r7) + I1 (P, Wl 
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t 
1 

= ----.- I'+ 1’ ros 0 sin CID 1 

Y V [I 131 r1tJ 
+ (’ + “y ros “1 + lo (9) 4 fi (P, M) (30) 

SinOn 

1 

11 dJ+ t*+g+c+_._- -_ 
V 1(1 dt) 

+ (1 + PI 0 rosfl 
1 V I 

- 

0 

-ros 0 
-- 

V s 
qPIRIRP sin 0 ~$3 

0' 

0 
,=v+ 2 (1 - 11) sin 073 --- rl, 1 ’ 

V V V V \ 

q2,R1R2 sin 0 dO 
Ir, 

Substituting the' expressions for the stress resultants, that is fonn- 

ulas (30), into (21), and into (23) expressed in terms of stress result- 

ants, i.e. 

for the functions 4/1 and V we obtain two equations: 

+ $ & (~0s~ 0 - sin? 0)] = li, (q) -j- F, (P, M) (32) 
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p =- 
A1 

d ‘In (9) +$ (p7 n1)1 + c$ [fo (q) + fl (P, n/r)] + f (q*J (33) 

where 

+ [p cos2 fl- 2 (1 + p)] f [ q2J?Jt2 sin 8 d8 
u’ 

k now introduce new functions v and {II,, connected with V and $ by the 

relations 

and subsequently we use the notation 

12 (1 - u2) R,Z 
h’ = 474 

Mtiplying (32) by 12R, (1 - p*)/h* and (33) by (- 2 iy*), and adding 

the results term by term, we obtain one equation for the complex function 

o = q1 - 2 iy*v, namely 

2R,2 COS? 0 
--‘) 

V- > ( 
+$ _ R1tine +Fsin20)+ 

+ 2iy2 [ - Rt:nO I Rl:nO 19 
pCOS2 0 + I&( 1 - 2 sin2 0)] Q = CD (q, F, M) 

where 

(9 (q, P, M) = [F, (q) + F1 (P, M)] ‘2 (’ ;/) R1- - 

-- 2iy2 
II 

T “, d ($ /I) + c$ (lo + I,) + I h2L)] 

(35) 

(36) 

To remain within the accuracy limits of the theory of thin shells, in 
the coefficient of the unknorm function (I in (35), we omit terms of the 
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order of magnitude of h/R, and of h*/‘v* as compared with the unity. ‘I’his 
ultimately leads to 
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