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Bending or wind pressure loading is called a loading which varies with
the angle ¢ (see figure) according to the formulas

g, = ¢1; €08 @, gs = @21 Sin ¢, gn = qn1 COS ¢ (1)

All stress resultants, as well as the displacements in the shell, vary
with ¢ in conformity with the same law:

T, =t coso, Ty =tycosq, § =ssing

M= mycosp, M,=mycosp, H =hsing

u = u, cos ¢, v = v, sin g, W = w COS P (2)
N, = n,cosq; § =£8,;C08%, & = €, COSQ, ®=owsing
Ny =ny8ing, % = x;€08¢, %= %3 C0SQ, T =r1sing

Therefore, in the case of the loading just indicated, the system of diffe-
rential equations of a shell of revolution becomes a system of ordinary
differential equations, but this system is of the eighth order, as in the
general case of loading.

The possibility of lowering the order of the system was first dis-
covered by Schwerin in the case of the spherical shell, It is also known
that the analysis of a cylindrical shell under bending loads can be re-
duced to the treatment of a differential equation of the fourth order
with constant coefficients [11].

Novozhilov has reduced the problem of analyzing shells having the shape
of any surface of revolution, under wind pressure loading, to that of one
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differential equation of the second order with respect to an unknown com-
plex function. To this end he introduced a complex transformation, of the

fundamental equations of the theory of shells. In this way the order of
the original system in terms of real quantities becomes halved. In carry-
ing out Novozhilov's complex transformation the original system of diffe-
rential equations can be simplified, however, in one of the following
ways. (1) Poisson’s ratio p is assumed to be zero:; (2) If p ¥ 0, a number
of terms is omitted in the compatibility equations (formula (16.5), p.71,

{3 .

The present note shows that the order of the system can be lowered
from eighth to fourth with no changes at all in the original system.

As such a system we use the five equations of equilibrium of shells
((1.5) [21), the three equations of continuity (5.1), p. 293 ]) and
the six elasticity relations ((12.1), p. 56 [31]).

After differentiation with respect to the coordinate ¢, the equations
of statics ((1.5) [2]) assume the form

—&%— (t,Rysin 0) 4+ R, (s + Ei’—) — tR, cos0 4 nR,ysin 6 4+ ¢ R R,sin8 =0

d . h h
W[R251119(3+-1%;/]+R‘0059(S+H_‘“_ (3)
— t2Rl + ngRl sin @ + Q21R132 sin 6=20

1 d . 51 i,
ACTY [-@- (n.R,sin B) -+ Rlnz] TR tgm =
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1 d _
M= 1Ky 8in @ {Z‘F (m1R2 sin 9) -+ R1h1 —— R1 cOos Gmg}
1 d (4)
e ["dv (lyRysin 0) — Ryn, + R, cos 9111]

ny

where R, and R, are the principal radii of curvature of the middle sur-
face of the shell. Multiplying the first and the third of (3) by — cos 6
and —~ sin 0, respectively, and adding the reults to the second, we find

d . d . J . -
— =g (LRasinBcos 8) — — (n, R, sin? 0) + — [R2 sin &(s + 7{1;)] +

+ (—q11¢080 4 ggy — g sin @) R R2sin8 =0 (5)
Integration of (5) leads to the first integral of system (3):

— 1R, sinbcos 6 — ny R, sin?0 - R,sin 6 (3 + TT;’) +
0

+§ (= Guy €080 -k gay — gy sin 8) R, R, sin 00 = C, 6)

&

The elimination of the quantities m, and n, from (4) and the third of
(3), allowing for (6), gives another integral of the equations of statics:

nRy2sin? 0 cos O 4 Iy RysinBcos B — ¢, R,2sin30 — mR,ysin 0 +

[ 6
+ S R,sin® [S (- 711¢€080 + goy — gy sin0) Ry K, sin Gdlﬂ 9 +
] b Q q
+ g (@ms €08 0 — gy, sin 6) R, R,2sin20d0 = C, + CIS R, sin 048 )
b B

The integrals (6) and (7) represent the conditions of equilibrium of
the end element of the shell enclosed between the two parallel sections
6° and 6. Stating these conditions directly, we find the constants C,

and Cz'

The system of stresses in the section ¢ = const is statically equivalent
to the stress resultant K, vd¢ and the moment M vd¢ (w=R, sin 8):

K,=T% + Tyt + Q= (Tycos0cos ¢ — Tppsing 4 @, sinBeos o) i 4
4 (T cosBsing 4 TypcosQ - @, sinOsing) j 4+ (—7T,sin0 4 @, cosB) k
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M|=M113—H1211=(—ngCOSOCOS?+M15inCP)i+ (8)
+ (—Hpcosbsing + M, cos @) j+ (—H,,sin0 + M, cos8) k

The shear force Ql' the stress resultants T12' and the twisting

T
1
moments le, H2 are connected with the quantities é, H and N by relations
of the form (2 f

Hs H
§=Tp,— If: =T21—'n—l:‘: 2H=Hy, 4 H,, 9

B 1 9 (Hu—Hs
Q=N + R,sin® o‘_qz( ] )

Equating to zero the resultant force and the resultant moment of ex-
ternal and internal forces at the section 8 = const, we get
0 2n
Kydp + Pi + S g (¢1%, + 2% -+ qan) Ry Rysin 0 didp = 0 (10)
o0

T

6 2
(M 4 ryxvK,)do + g & r X (1% + 2%+ gan) R R, sin 0 didp +
8’0

9{/73 °L/'7I;g

+(M—P

S

R, sinedo)j =0 (1)

ro = zb + yj, z = R,sin b cos g, Yy = Rysinfsing (12)

8
r =xi+yj——-kg R, sin 040
0

’

Integrating (10) and (11) with respect ot ¢, and allowing for (1),(2),
(8), (9), we find

t,R;ysin0cos 9 — sR;sin0 — A, sin 6 4 n R, sin% 6 +
0

—|—S (911 c089 — goy + qn, sin0) R,R,sin 6d0 = — ; (13)
0'

—myRysin0 — ¢, R,2sin®*0 4 n R,%sin?0cos0 4+ A R,sinOcosh 4
0

+ S (—@qnsin8 4- g,  cos 0) R, R,%sin? 046 —

7}
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R, smede] 46 =

D" @

(qu cos 0 — qy1 4 gny sin 0) Ry R, sin 9[

c:/‘ao

alx

0
+L S R,sin0df (14)
]

’

Comparison of (6), (7) with (13), (14) shows that

M
Cl = Cr= n (15)
i.e. the constants C; and C, of integration are proportional to the force
and the moment, respectively, applied at the end section of the shell.

Having derived two integrals of the equations of statics, we obtain
without difficulties two integrals of the continuity equations as well.
To this end it is only necessary to make use of the statico-geometric
analogy, that is, in the case under consideration, of the circumstance
that the continuity equations in terms of the strain components ((5.1),
p. 29, and (8.2), p. 39, [3 1) and the homogeneous equations of statics,
after the elimination of N, and N,, contain the same differential opera-
tors, while the quantities

Ty, vy M, (—e2); S (—1)
Ty, = M,, (—e&1)s H, (1/‘2“’) (16)

appear in these equations in the same manner.

Transforming (6) and (7), allowmg for (4), putting q,, = Iy = 9,1 =0,
and replacing the variables (tl ty, . .) by (K21, Kiqr ++. €tc. in
conformity with (16), we get

f]Cn]

1f251n0(72]c0co+11)——n—sm"’O — (g9 —€y)sinlcos0 +C3=0 17)

Rysin0cos 0 deq e .
—Q—ST#— (d—suﬂ + wcos 0 4 g5 8in°0 - £, €052 0 — %5 R, 5in20 =
1

0

= <c4 ¢, S R, sinOdO) (18)

(T4

The strain components in terms of displacements are given by the
formulas

1 diy wy e — wysin® + vy 4+ uycos 0
= Ity 5in 0

= w0 TR
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1 dm uy 4+ rycos0
1, a0 Ity sin U

X1 = KW_’/H) (19)

_ 1 [1/“ 4+ sin0 cos 0 (dwl - ]
A= ein0 Tuasin g Tt \ 0 1

1 [ 1 dim uy cos0 (iry + vy 8in0) |, sin0 (iz_v]_]

‘r T e————
1 Ky sin 0

Iody Ity Hasin 0 Ity dY

Substituting these expressions into the equations (17), (18) and consider-
ing that this substitution must satisfy these two equations identically,
we find

C3=C4=O

As a result of the determination of four integrals of the original
system of differential equations, the order of this system is halved. To
show this explicitly we write down the system arrived at:

vty —vscos — 20, sinfcos® + m,sind =

0
=V (/o (qu: a1, @ua) + 1 (P, M)] + cos B g g2 R Ry sin 6 db (20)
&
L [d 0 8 P 028 — sin2h
Tmf[d—o (myy) + Rihy — muR,| cos ]— ssinf - - (cos?8 —sin?8) — (21)
0
— M09S0 By (qus orr gui) 4 Fu (P, M) + "8 R,R,sin 0 df
A
v - vt €080 — g, 8in b —wsinBcosh =0 (22)
1{1—1%~nsino __u)c(‘)'s'le_euzosﬁzo (23)
’/"‘J 1+ 2sR, cosf 4 2 —smO 42k, cos8 — Ryt + (24)
+ 2I, Ry smvﬁ (‘osG Rl sin 6 + g2, R R, sin 6 = 0
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-~ Ry — v— — 2R, cosft + wcosh 4 sin & 5 + (25)
+ R,smzcose ©+ R.iinﬁsu -0
8

Jodquis a1y @n1) = Jo(gq) = — (E-S(qn c0s8 + g, 5in9) R,R,sin 6 df +

&

( g1 Sin 6 +- g, cos 0) R, R,2sin? 6 df —

Qt/.@

+ 520

[:]
(g12¢080 — gy + gy sin 8) R, R, sin 0 [S R,sin® da] dt)
J

I
C R D

/1(p,M)=—P°°S"—(i’+_5SR,smedeﬁ'"e (26)

TV i
0’

sin

( ucost 4 gn sinf) R R,sin8df —

Folqs qur gm) = Fo(q) = —

D D

-coqo {3 (—q115in 0 + gny cos 0) R, R,?sin%0 d6 —

9
8

0
— S (g12 €080 — g5y + gny 8in8) R R, sin 6 [8 R;sinb dﬂ] d }
'8 8’

nv

0
Fy(P,My= —"smo <”+_’;_§1?lsmede)°_‘§i’
[

Equation (20) is derived from the integrals (13) and (14) by eliminat-
ing the quantity n,; (21) is obtained from the same integrals by the
elimination of t.; (22) and (23) are continuity equations derived from
the integrals (1%) and (18) by eliminating the quantities de¢,, /d@ and

K, Tespectively; (24) is the second equation of statics obtalned by
eliminating n,; (25) is the second continuity equation. We note that the
compatibility equations (22), (23), (25) can be expressed, with the aid
of elasticity relations, in terms of stress resultants; this would lead
to a system of six equations sufficient to determine the six unknowns
ty, tz, S, my, “2' 1 This system would, however, be a very complicated
one in spite of the lowering of the order of the differential equations.
To reduce it to a simpler form we use a procedure similar to that intro-
duced by Meissner for transforming the system of equations of the axisym-
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metrical shell problem,

From relations (19) we immediately derive

1 d¢ q;con €218in0 $ , o sinG
1= hr m + + lv ’ 11=—_v+ v
c030 | €,8ind
xy = ¥ — + (27)
where
1 7dun w080 —u, 8in 0
$=— E(-gg- — ul) + 5 (28)

It is not difficult to verify that eliminating i from the three equa-
tions (27) leads to two relations identical with (22) and (25). Thus, with
the aid of (27), one of the integrals and the second compatibility equa-
tion are identically satisfied.

Similarly, we represent the stress resultants by means of a certain
function in connection with loading terms selected in such a manner as to
satisfy the two nonhomogeneous equations of statics:

0
1 av VcosO mqesin® cosH .
7ra T ——2v - SanlR,smGdB
0'

t2=—‘

Vcos __msind sin@

t = " + fo(q) + /1 (P, M) (29)

1]
Y uging— L & g, Ry sin 6 df

0’

S =

The elimination of function V from (29) actually leads to two equations
identical with (20) and (24).

To obtain equations for determinating the functions ¢y and V, it re-
mains to make use of the equations (21) and (23) and the elasticity rela-

tions, which permits all stress resultants to be expressed in terms of
yrand V.,

Indeed, from (27), (29) and from the elasticity relations ((12.1),
[31), disregarding quantities of the order of magnitude of h?/v? as com-
pared with the unity, we obtain

N
D

(1+p)dcos0d +1—p2 Vsin0cos0

I dd
m = 1_— do v L Ve

-+

sin 0

4+ S (U — ) o (9) + £ (P, M)]
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A wdy  (t+p)dcosh sin0 (1 — p?[VeosO 1 n’V]__
M=% g T v LE—y [ B D
8
1 —p2)sinOcesO .

_ p[;hv" gq21R1R2sm0d6,
h V(1 —w) 2(1-—}12)Vsin0 2(1 —p?)sind
N, + iz 7e (k) gqm]?l?zsmﬁdﬂ

Veos6 sin0D T 1 O (1 +p)deosh

=t D LRI L @+ AR M) (30)
¢ 1 dV V(‘ose___sinOD wodd 1+ m)deosh
2= R, 46 v Y {TE’&U+ v J‘"

—co0s 0

S g R R, sin 0 4

'}

0
\4 2(1 —p)ysinGD 1 ¢
S:T+——}\?—*-:—-—T\ 21R1R251n0d0
0’
where
Fhe
D= T (1= o)

Substituting the expressions for the stress resultants, that is form-

ulas (30), into (21), and into (23) expressed in terms of stress result-
ants, 1.e.

1 d 12(1 + 2(1 +p)scost0 0 .
E—%(tz—yt) ——“—)lzlsmO (-——%——(tl-—m?)fn—:—:O(M)

for the functions ¢y and V we obtain two equations:

It dud T Ty v

D@y . Doy v dn
["Tx,‘-’(du] + cos O:I -+ va [——(1—{—(;)51110—

21— 1y 2(1 4+ )y Rycos?0 sin 0 sin 0 h?
o v - v ]+V|:_ v +Tl
1§

7 1o (08?0 —sin?0)| = Fy () 4 Fy (P, M) (32)
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1 d%¥ dv( 1 dRy , cosh (1—w)sinb  2(1—u)
KiEder 7 4o\ I3 do + h,v)+V[— v vE

2(1 — p)cos?b 12 sinB  sinBcos?® | sin26—cos?B
— v ] + (1 2) D(p [ h? V vs + Rlv" ]:
d[fqa P, M 0
— b dh@ENE M 80 0y P MY g (33)

where

v

]
1 d ] .
@) =5 |5 | enBuRssin0d0] +
)

[}

+ {rcos?—2(1 + u)l— S ga1 R R, sin 0 db

v

We now introduce new functions v and ty,, connected with V and ¢» by the
relations

14 _Lny
V== TRl ¢ = R (34)

and subsequently we use the notation

12 (1 — u?) Ry?
( h:") 1 — 4'{4
Multiplying (32) by 12R, (1~ u?)/h? and (33) by (- 2 iy?), and adding
the results term by term, we obtain one equation for the complex function
o= - 2 iyzv, namely

d%s do (__11 dit +R|COSO)+ ( Ry;sin®  2R,?

dr T A0\ I ds v Ve
D) g Gu (el +¥sin20)+ (35)
+ 2ip [ — TS °+”‘ 0 S cost 0+ (1 — 2 sint0)]s = @ (g, P, M)
where
© (g, P, M) = [Fy (q) + Fy (P, M)) 2000 T
— 20 [ ) L SRt ) + £ g (36)

To remain within the accuracy limits of the theory of thin shells, in
the coefficient of the unknown function ¢ in (35), we omit termms of the
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order of magnitude of h/R, and of h?/v? as compared with the unity. This
ultimately leads to

* .o Pisin 0
%+%(“%%1+1f10v050)_2112_1_s_&?_c=®(q’P,M) (37)
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